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ABSTRACT

An analysis of changes in precipitation extremes in western Canada is presented, based upon an ensemble

of high-resolution regional climate projections. The ensemble is composed of four independent, identically

configured Community Earth System Model (CESM) integrations that were dynamically downscaled to

10-km resolution, using the WRF Model in two different configurations. Only the representative concentration

pathway 8.5 (RCP8.5) scenario is considered. Changes in extremes are found to generally follow changes in

the (seasonal) mean, but changes in mean and extreme precipitation differ strongly between seasons and

regions (where extremes are defined as the seasonal maximum of daily precipitation). At the end of the

twenty-first century, the highest projected increase in precipitation extremes is approximately 30% in winter

away from the coast and in fall at the coast. Changes in winter are consistent between models; however,

changes in summer are not: CESM is characterized by a decrease in summer precipitation (and extremes),

while one WRF configuration shows a significant increase and another no statistically significant change.

Nevertheless, the fraction of convective precipitation (extremes) in summer increases by 20%–30% in all models.

There is also evidence that the climate change signal in summer is sensitive to the choice of the convection scheme.

A comparison of CESM and WRF shows that higher resolution clearly improves the representation of winter

precipitation (extremes), while summer precipitation does not appear to be sensitive to resolution (convection is

parameterized in both models). To increase the statistical power of the extreme value analysis that has been

performed, a novel method for combining data from climatologically similar stations was employed.

1. Introduction

There is considerable interest in the impact of an-

thropogenic climate change on extreme events, in

particular hydroclimatic extremes such as heavy pre-

cipitation events (Herring et al. 2014; Stott 2015). In-

terest is especially intense in the climate change impact

and adaptation community, for which changes in extreme

events can be as important, or evenmore important, than

changes in the mean climate (IPCC 2012).

In this study we focus on precipitation extremes in

western Canada, which, for the purpose of this analysis,

shall be taken to comprise the Canadian provinces of

British Columbia (BC) and Alberta south of 558N. The

region is characterized by extremely complex topography

and a strong precipitation gradient across the Rocky

Mountains. An analysis of various indices of precipitation

extremes in station observations across Canada was ini-

tially conducted byVincent andMekis (2006). They found

no evidence for an increase in extreme precipitation

events inwesternCanada.However, several other authors

have also considered projected changes in precipitation

extremes based on global climate models (GCMs) and

regional climate models (RCMs), and these studies typi-

cally have found increases in precipitation extremes over

the area of interest.

Probably themost comprehensive such analysis to date

is that of climatic extremes in the CMIP5 ensemble of

GCMs discussed in Kharin et al. (2013). According to

their analysis, the projected increase in the intensity of

precipitation extremes in western Canada is expected to

be approximately 20% by the end of the twenty-first

century [under the representative concentration pathway

8.5 (RCP8.5) scenario], where precipitation extremes are

defined as events with a return period of 20yr. This
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translates into an increase of roughly 4% 8C21. The pro-

jected increase in mean precipitation under the same

scenario is approximately 10% or 2% 8C21. It is, however,

important to recognize that these are changes in annual

maxima and annual means, respectively. A recent as-

sessment of changes in seasonally averaged precipitation

over North America based on the CMIP5 ensemble has

appeared in the Fifth Assessment Report of the In-

tergovernmental Panel on Climate Change (Christensen

et al. 2013). Therein it is reported that there is wide agree-

ment between models that winter precipitation in western

Canada will increase with global warming, although the

signal in summer is much weaker and there is little agree-

ment between models. The majority of the CMIP5 models

display a tendency toward decreasing summer precipitation

in the south and increasing precipitation in the north, with a

transition region over western Canada (between 508 and
558N). It is, however, worth pointing out that the higher-

resolution NARCCAP ensembles of RCMs and the high-

resolution atmospheric GCM ensemble of Endo et al.

(2012) both place the transition region farther south, so

these models project an increase in precipitation over most

of the area of interest. This may indicate that low-resolution

global models are inadequate for projecting the effect of

climate change in this region.

An analysis of changes in summer precipitation

extremes (April–September) over Canada using a

higher-resolution regional climate model [the Canadian

RCM (CRCM), version 4] was presented byMladjic et al.

(2011). They find an increase in the intensity of various

types of precipitation extremes of 10%–15% over

western Canada by the middle of the twenty-first

century. Furthermore, they report larger increases in

high-latitude regions, where the projected increase in

mean precipitation is also higher. Two other recent

studies that have employed an ensemble of regional

climate projections for the analysis of changes in pre-

cipitation extremes over North America are those by

Dominguez et al. (2012) and d’Orgeville et al. (2014).

However, Dominguez et al. (2012) only considered

changes in winter precipitation in the western United

States, while d’Orgeville et al. (2014) only considered

changes in summer precipitation extremes in the Great

Lakes region. Both find a substantial increase in pre-

cipitation extremes that is larger than the increase in

mean precipitation [in fact, Dominguez et al. (2012)

find no increase in mean precipitation]. Furthermore,

analyzing simulations over the European Alps, Torma

et al. (2015) have recently shown that high-resolution

RCMs can add considerable value to GCM projections

over complex topography and in particular to the

representation of precipitation extremes. Western

Canada has similarly complex topography and hence

RCMs would also be expected to add significant detail

in this region.

It is worth noting that both Mladjic et al. (2011) and

Dominguez et al. (2012) based their analysis on data

frommodels with relatively low resolutions (30–50km; the

NARCCAP ensemble and the CRCM version 4, re-

spectively). Here we present an analysis of precipitation

extremes based on an ensemble of high-resolution regional

climate simulations at a resolution of 10km. The ensemble

is driven by a small set of four identically configured global

simulations with the Community Earth System Model,

version 1 (CESM1), under the RCP8.5 forcing scenario,

that differ only in their initial conditions. These simula-

tions have been dynamically downscaled to 10-km reso-

lution using the Weather Research and Forecasting

Model, version 3 (WRFV3), in two different configura-

tions. Downscaling has been performed for a midcentury

period and an end-century period over western Canada.

The combination of models is the same as in d’Orgeville

et al. (2014), but they employed a physics-based ensemble

with only a single historical and midcentury realization for

each ensemble member. To assess model uncertainty, we

will also employ two different moist physics configurations

in WRF. The mean climate of the CESM ensemble and

one of the two WRF configurations extending to the

middle of the twenty-first centurywas previously discussed

by Erler et al. (2015) in the context of a discussion of hy-

drological changes in the Fraser and Athabasca River

basins. For the purpose of validation of the representation

of precipitation extremes, we will compare the simulations

directly to daily observations from Environment Canada

(EC; now Environment and Climate Change Canada)

meteorological stations (Mekis and Vincent 2011). This is

preferable to the use of reanalysis (as in Dominguez et al.

2012; Kharin et al. 2013), because precipitation in re-

analysis is strongly affected by model physics and not well

constraint by observations. Observational gridded prod-

ucts, on the other hand, do not have the temporal resolu-

tion necessary for our analysis (i.e., daily).

The detection of changes in precipitation extremes

with decadal return periods is confounded by a high

degree of natural variability and a scarcity of observational

records of sufficient length. This also applies to climate

model projections, albeit to a lesser extent when large

ensembles are available (such as CMIP5 or NARCCAP).

Simple numerical experiments show that a sample size of

approximately 400 is necessary to reliably detect a 15%

increase in the mean of the distribution of extremes.1 To

1Using random samples from two generalized extreme value

(GEV) distributions and the Kolmogorov–Smirnov test with

a 5 0.05.
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overcome this problem in our relatively small en-

semble, we have developed a pooling technique that

combines data from different stations (or grid points

at station locations) based on the similarity of their

climate. This is a major difference to many earlier

studies, most of which estimate distribution parame-

ters on a gridpoint-by-gridpoint basis. Other studies,

such as Mladjic et al. (2011), also use regional fre-

quency analysis (RFA; e.g., Hosking and Wallis 1997;

Cooley 2009). Our approach is similar to RFA in that

samples from different sites are combined (pooled).

This, however, requires a degree of homogeneity be-

tween the samples, which is the main weakness of

RFA: typically pooling regions have to be defined a

priori, without any objective means of establishing

statistical homogeneity. We solve this problem by

applying a clustering algorithm based on average cli-

matic characteristics of the stations (locations). We

demonstrate that this technique yields good fits to the

data and statistically meaningful results. In a similar ef-

fort, Jones et al. (2014) have recently used distribution

parameters and other measures of precipitation extremes

estimated at station locations to cluster station observa-

tions in the United Kingdom. However, we argue that a

single station record does not provide sufficient data to

adequately constrain the distribution (parameters) of

precipitation extremes, and consequently the resulting

clusters will be subject to higher levels of noise than clus-

ters based on the mean climate. Furthermore, Bernard

et al. (2013) argue that commonly used clustering algo-

rithms are not suitable for data that follow a strongly

nonnormal distribution (such as extremes).

For the purpose of our analysis, including the extreme

value analysis, we use pooled data from station clusters

for the validation period and the projection phase.

d’Orgeville et al. (2014) also validated their simulations

against station observations but then aggregated the

data over the entire domain for the projection phase.

This approach can be used for the relatively homoge-

neous Great Lakes region, but it is not feasible for the

domain under consideration here, because of the het-

erogeneity of the climate. Furthermore, one can also

argue that station locations are in some way represen-

tative of human habitation and activity, and thus

provide a natural selection of locations with a sensible

density weighting for impact assessment. We therefore

choose to also employ the station clusters for the anal-

ysis of future changes. In addition and to further dif-

ferentiate the present study from previous studies, we

also pool data within each initial condition ensemble.

This is possible because the configuration of the en-

semble members is identical, so all the events can be

considered to be drawn from the sameparent distribution.

The same argument is usually made to pool data from

long time series and can also be made for station loca-

tions that have a similar climatology.

The primary objective of this article is to document

the possible impact of climate change on precipitation

extremes in western Canada, based on high-resolution

regional climate simulations. A secondary goal is to

introduce a novel clustering and pooling technique as an

alternative to regional frequency analysis. Details con-

cerning the experimental setup and the model configu-

rations used in the three ensembles are given in the next

section (section 2). The clustering algorithm employed

for pooling and the fundamentals of extreme value

analysis are described in section 3. In section 4 changes

in the seasonal mean and in extremes in different re-

gions will be discussed, before results from the extreme

value analysis are presented in section 5. Although the

main focus in section 5 rests upon the WRF ensemble

that was also employed by Erler et al. (2015), differences

betweenWRF andCESM results and the ‘‘added value’’

of higher resolution will also be discussed. Section 6, on

the other hand, deals primarily with differences between

the two WRF ensembles and the role of convective

precipitation in this context. The main results of the

present study are summarized in section 7. Furthermore,

it is useful to note at this point that most of the analysis

in sections 4–6 will be based on three representative

station clusters: one for the Pacific coast, one for the

interior plateau, and one for the Prairies, which will be

referred to as Pacific, plateau, and Prairies, respectively.

The Prairies cluster is primarily located east of the

Rocky Mountains and in their rain shadow, while the

plateau cluster is located to the west of the Rocky

Mountains and in the rain shadow of the Coast Moun-

tains (see Fig. 1).

2. Experimental design and datasets

a. Experimental design

The analysis presented in this article is primarily based

on two small ensembles of dynamically downscaled cli-

mate projections. Both RCM ensembles downscale the

same ensemble of GCM simulations, but they employ

different moist physics during the dynamical downscaling

phase. This makes three initial condition ensembles, each

composed of four identically configured members.

The global climate projections were generated using

the CESM, version 1.04, in the standard CMIP5 con-

figuration (Gent et al. 2011); the CESM ensemble

members differ only in their initial conditions (see

Erler et al. 2015 for details). CESM is a fully coupled

global climate model with interactive atmosphere, land,

ocean, and sea ice components; the nominal resolution of
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the standard configuration is approximately 18 (’100km

at 508N).

The regional simulations differ in initial and boundary

conditions (including sea surface temperatures and sea

ice, which are prescribed from CESM). Each ensemble

member was separately downscaled over western

Canada, using a nested configuration consisting of an

outer domain and an inner domain. Large-scale spectral

nudging was applied to the outer domain to reduce

phase drift between the global model and the regional

model. The outer domain covers most of North America

and the North Pacific at a resolution of 30 km, while the

inner domain encompasses the Canadian provinces of

British Columbia and Alberta, as well as parts of the

surrounding territories, at a resolution of 10 km [see

Fig. S1 in the supplementary material or Fig. 1 in Erler

et al. (2015)]. This resolution is much higher than

most gridded datasets and all available reanalysis. The

regional simulations were performed for three 15-yr

periods: a historical validation period from 1979 to 1994, a

midcentury period from 2045 to 2060, and an end-century

period from 2085 to 2100. Only one representative con-

centration pathway, the ‘‘business as usual’’ scenario

(RCP8.5), was used. In this scenario the CO2 and CH4

concentrations are 541ppmv and 2740ppbv in 2050, and

936ppmv and 3751ppbv in 2100, respectively.

We have chosen a time-slice approach with a small

initial condition ensemble in order to address the two-

fold problem of high internal variability and non-

stationarity. Deser et al. (2012) have demonstrated that

natural variability can be very large at regional scales, in

particular for precipitation, so many decades of data are

necessary to obtain stable statistics. At the same time the

process of anthropogenic global warming imposes a

secular trend on the climate system with a time scale of

several decades. This means that time series data of

FIG. 1. Station locations and province outlines (BC and Alberta) with topography. The marker color

indicates station cluster association; clusters 2, 6, and 8 were used in the analysis. Stations with more than

300-m elevation error in WRF have triangular markers and were excluded from the analysis. The to-

pography of the inner WRF domain is shown in the background (10-km resolution).
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sufficient length to obtain stable statistics (in a station-

ary climate) potentially stretch over several distinct

climate states. By combining the time-slice approach

with an initial condition (IC) ensemble, it is possible to

overcome this problem, because the 15-yr time slices

employed for each period are short enough that the

climate statistics within them can be considered sta-

tionary and the sample size is increased through addi-

tional independent realizations from the IC ensemble.

Whether 60 yr of data, with or without pooling, is suffi-

cient to obtain a representative sampling of the distri-

bution of any given hydroclimatic variable remains

unclear at this point and in any event depends on the

variable and the statistic in question as well as the re-

quired accuracy. Schindler et al. (2015) argue that only

30 years of data are sufficient to fully characterize the

distribution of daily precipitation in a GCM, which

would include the effect of large-scale quasi-periodic

climate modes [such as ENSO and the Pacific decadal

oscillation (PDO)]. However, other authors (e.g., Lucas-

Picher et al. 2008) argue that a longer time series would

be required to characterize mesoscale variability, and

for the analysis of rare extreme events a much longer

time series would certainly be desirable, which can only

be effectively obtained by pooling.

The following definitions of seasons are used

throughout this article; spring: March–May; summer:

June–August; fall: September–November; and winter:

December–February.

b. Model configuration

One of the two WRF ensembles used in this study, as

well as its mean climate up to midcentury, has been

described previously in detail in Erler et al. (2015). In

section 4 of this article, the analysis of the mean climate

will be extended to the end of the twenty-first century, so

as to provide context for the extreme value analysis

presented later. The model release employed for down-

scaling is the Advanced Research version of WRF

(ARW), version 3.4.1, to which a lake model (Gula and

Peltier 2012; here employed in fully interactive mode

rather than in offlinemode) and code for time-dependent

greenhouse gas (GHG) concentrations were added. The

most important choices of physical parameterization

schemes are as follows: the Noah land surface scheme

(Tewari et al. 2004), the Morrison two-moment micro-

physics scheme (Morrison et al. 2009), the RRTM for

GCMs (RRTMG) radiation scheme (Iacono et al. 2008),

and the Grell-3 ensemble cumulus scheme (Grell and

Dévényi 2002). Formore information onmodel setup, we

refer the reader to Erler et al. (2015).

To test the sensitivity to moist physics parameteriza-

tions, an alternate WRF ensemble was also integrated,

which will be discussed in section 6. The configuration is

identical to the first WRF ensemble, except that the

Kain–Fritsch (KF) cumulus scheme (Kain 2004) and the

WRF single-moment 6-class microphysics scheme (WSM6;

Hong and Lim 2006) were employed, as recommended in

theWRF user guide (Wang et al. 2012) for regional climate

simulations. This WRF ensemble will be referred to as the

alternate ensemble (AE),while the firstWRFensemblewill

be referred to as the IC ensemble or simply as the firstWRF

ensemble.

Most of the analysis presented here will be for the IC

ensemble, and differences to the CESM ensemble and

the alternate ensemble will be noted where appropriate.

The IC ensemble was chosen as the primary object of

analysis, because it is characterized by an intermediate

climate change response (between CESM and the al-

ternate ensemble) and it achieves the best agreement

with observations for precipitation extremes.

c. Station observations

For the purpose of validation, we employ the EC

station dataset for daily precipitation described by

Mekis and Vincent (2011). The observations are qual-

ity controlled and corrected for undercatch, as well as

site and instrumentation changes. In particular, records

from stations separated by less than 10 km have been

merged so correlations between stations should be

small. For a detailed discussion of data preparation and

trends in the mean climatologies, see Mekis and

Vincent (2011).

The variables provided for each station are daily ac-

cumulations of total precipitation, solid precipitation,

and liquid precipitation. All other variables used in this

study were directly computed from these data. Because

of the secular trend imposed by the global warming

process, we use data only from 1950 to 2010; this choice

is a compromise between data availability and statio-

narity of the climate. We also restrict the analysis to

stations in the Canadian provinces of British Columbia

and Alberta between 498 and 558N. Furthermore, to

mitigate disagreement between model simulations and

station observations due to inconsistent topography, we

omit all stations where the elevation error in the inner

WRF domain is larger than 300m; this excludes most

alpine stations.

3. Analytical methods

This section introduces the analytical framework

employed in the analysis of precipitation extremes

presented in this article. The same framework has also

been employed by Erler and Peltier (2015) to analyze

precipitation extremes in historical observations in
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western Canada. Additional information is available in

section S2 of the supplementary material.

a. Station clustering

As has been outlined in section 1, it is desirable to pool

station data in order to increase the amount of data from

which the parameters of the probability distribution are

estimated. However, it is not feasible to combine all sta-

tions, because in particular British Columbia is far too

heterogeneous, so the distribution parameters vary and a

reasonable fit is impossible to achieve. It should be noted,

however, that the climate of Alberta is sufficiently ho-

mogeneous that pooling of all nonalpine stations within

the province would be feasible (see section S2.3 in the

supplementary material for further discussion).

To group stations with a similar climate and seasonal

cycle, we have chosen the well-known k-means algorithm

(Hartigan and Wong 1979), for which we employ the

implementation from the Scikit-learn machine learning

library for Python (Pedregosa et al. 2011). The k-means

algorithm groups n-dimensional vectors based on their

Euclidian distance into an a priori determined number of

clusters. It works by iteratively adjusting the position of

so-called centroid vectors so that the sum of the distances

of each vector to the closest centroid is minimized. Each

station was represented by a feature vector composed of

the climatological seasonal cycle of monthly mean liquid

and solid precipitation measured at the station (2 3 12

values–dimensions). To reduce the dimensionality of the

station vectors, principal component analysis was applied

prior to clustering, and only the three leading empirical

orthogonal functions (EOFs) were retained, which com-

bined explain 97% of the total variance. This reduces the

dimensionality of the station vectors to three. The result

of the clustering algorithm is not sensitive to the number

of EOFs used, as long as the first three are included. The

locations of stations and their cluster associations are

shown in Fig. 1. A total of nine clusters were used in the

clustering algorithm. This number was chosen so that at

least one cluster with more than 500 combined years is

available for each of the three major regions (Pacific

coast, interior plateau, and Prairies). The number of

clusters is somewhat arbitrary, but certain types of clus-

ters occur robustly, regardless of the total number. The

first division occurs between stations at the coast and

stations farther land inward (which differ significantly in

the amount of total winter precipitation). The next major

division is between the plateau and the Prairies (which

differ in the amount of solid precipitation and tempera-

ture). However, prior to the emergence of the Prairies

as a separate cluster, several smaller clusters form close to

the coast, where the magnitude of winter precipitation

varies significantly (Vancouver Island in particular has

very high precipitation). The three main regions emerge

with more than six clusters, but with a larger number, the

major groups become more homogeneous, because ‘‘out-

liers’’ are moved into separate clusters.

In the design of the clustering algorithm, a conscious

effort was made to identify regions that correspond to

more general hydroclimatic categories, in the sense of,

for example, the Köppen–Geiger climate classification

system (Köppen 1936), rather than to simply cluster

stations with similar precipitation extremes. There are

two reasons for this choice. The first is to avoid over-

fitting of the observations, in order to facilitate a fair

comparison between the models and observations. The

second is that in this way the likelihood is higher that

general precipitation characteristics, such as distribu-

tion, frequency, intermittency, and the type and process

of precipitation, are similar, and not only the magni-

tudes; this will prove important for the analysis of cu-

mulus precipitation in section 6. Sensitivity experiments

show that the clustering results are not very sensitive to

the precise choice of variables, as long as a measure of

total precipitation and temperature is included. Solid

precipitation was included as a measure of (winter)

temperature and continentality, because temperature

data were available for only about half of the stations,

but using interpolated temperature data from a gridded

dataset leads to very similar results. Furthermore, in-

cluding measures of precipitation extremes (or vari-

ability) in the clustering algorithm does not change the

results either. The reason is that the Pearson correlation

coefficient of the climatological means of monthly

maximum precipitation and monthly mean pre-

cipitation, computed over the seasonal cycle (monthly)

and all station in BC and Alberta, is 0.97. Hence, the

magnitude of extreme precipitation follows that of mean

precipitation. On the other hand, using only measures of

total precipitation (mean, variance, and/or maxima)

leads to very small clusters at the coast (due to the strong

precipitation gradient) and late separation between

the plateau cluster and the Prairies cluster. Inclusion

of the number of wet days also facilitates the separation

of the Prairies cluster but has little effect otherwise. Also

note that clustering was performed only on the observed

station data; model data did not enter the algorithm.

This facilitates the comparison between the three en-

sembles and penalizes models with a climatology that

strongly deviates from the observed climatology. For the

same reason it was also not possible to consider the

climate change signal in the clustering algorithm, as

it would make the clusters model dependent. For

additional discussion of the clustering algorithm, we

direct the reader to section S2.1 of the supplementary

material.
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Three clusters comprising 53 stations have been cho-

sen for the purpose of our analysis: 2, 6, and 8. This

choice is based on cluster size, agreement between ob-

servations and simulations, and representativeness (see

below). Cluster 2 (11 stations) will be referred to as

Pacific, cluster 6 (15 stations) as plateau, and cluster 8

(27 stations) as Prairies, in accord with the three regions

described in section 1 (note, however, that some of the

stations in the plateau cluster are actually in Alberta). The

Pacific cluster is sometimes loosely referred to as ‘‘the

coast’’; the plateau and Prairies clusters together are often

referred to as ‘‘land inward.’’ Results will be presented

separately but aggregated over each regional cluster.

b. Extreme value analysis

Extreme value analysis is the study of the highest or

lowest quantiles of a randomly distributed variable;

these quantiles are often referred to as the tails of the

distribution. There are two fundamental approaches to

this analysis (Coles 2001; Katz et al. 2002). One is often

called the peak-over-threshold approach, which is con-

cerned with the distribution of all samples that exceed a

fixed threshold. The resulting distribution of extremes is

of the generalized Pareto distribution (GPD) type. Its

use makes immediate sense when a threshold can be

selected a priori, but otherwise it is problematic (Katz

2010). The approach that is employed here is based on

the generalized extreme value (GEV) distribution. The

GEV distribution is based on a block maximum approach,

where the maximum is taken over a fixed number of in-

dependent and identically distributed samples. According

to the extreme value theorem, for any parent distribution

of the samples, the GEV distribution is the limit distribu-

tion of such a process, when the block size tends toward

infinity.

To gauge the quality of the resulting fit, we make use

of the Kolmogorov–Smirnov (K–S) test (Smirnov 1939;

Massey 1951), which measures the maximum difference

between the cumulative density function (CDF) of two

distributions (discrete or analytical). We also use the

K–S test tomeasure the agreement between the observed

distribution and the (bias corrected) model distributions

from the simulations, as well as to determine the statis-

tical significance of future changes. For either compar-

ison (samples to fit or between two samples), we report

the p value associated with the K–S statistic (Smirnov

1948). The p value can be thought of as the significance

level at which the null hypothesis that the two samples

are drawn from the same parent distribution can be re-

jected (von Storch and Zwiers 2002). The p values that

are reported for the quality of fit are biased upward,

because the same data were used for the goodness-of-fit

test as for the estimation of the fit parameters (i.e., there

is a risk of overfitting). This problem can be overcome by

cross validation and is further discussed in section S2.2

of the supplementary material. However, in order to

make full use of the available data, we will use the entire

dataset for fitting and testing, and report p values for the

goodness of fit with the understanding that they are not

proper hypothesis tests, but merely a measure of the

quality of the fit. Further note that p values associated

with the comparison of two independent samples (such as

models and observations) are not biased and represent

proper hypotheses tests.

In the study of climatic extremes, the canonical block

size is one year (Cooley 2009; Katz 2010), but we will

deviate from this convention here and consider seasonal

maxima instead. We limit the block size to one season,

because climatic variables are typically subject to strong

seasonality, so the assumption of identical distribution is

questionable. Furthermore, the annual maximum is of-

ten dominated by events from only one season (e.g., the

rainy season), so not much data are lost by separating

seasons.

To increase the number of data points that constrain

the distribution fits, we pool data from different sta-

tions within a cluster and fit a single GEV distribution

to the combined data. This approach is similar to RFA

(Hosking andWallis 1997; Cooley 2009), where samples

from different sites across an a priori defined region are

pooled. To allow a reasonable distribution fit to the

combined samples, the pooling region has to be suffi-

ciently homogeneous. In section S2.3 of the supple-

mentary material we show that a GEV fit to data pooled

over the entire province of British Columbia can be

clearly rejected based on the goodness-of-fit test (the

K–S test). In RFA this problem is typically overcome by

normalizing each sample by its site-specific sample

mean, before pooling the data and fitting a distribution.

However, this still requires a high degree of homoge-

neity in the shape of the distributions. This assumption

of homogeneity is not supported by our analysis, and

Mladjic et al. (2011) also report a failure to fit a para-

metric distribution to precipitation extremes pooled

over western Canada. The advantage of using the clus-

tering approach over regional frequency analysis is that

the homogeneity assumption is required only within a

cluster, and the station clusters have been constructed

based on climatic similarity. We also find that, based on

the goodness-of-fit test, the clusters are sufficiently ho-

mogeneous, so prior normalization is not necessary in

our case. In principle it is possible that the pooled

samples are actually not homogeneous but still allow a

good distribution fit; in this case pooling can introduce

biases. However, the same argument can also be made

with respect to different time periods, a case where
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pooling is rarely questioned. For example, in many re-

gions the climate exhibits long-term variability on a

decadal time scale, which is often associated with slowly

varying climate modes, such as ENSO or the PDO in

western Canada. It would thus be reasonable to expect

the parent distribution of extreme events to slowly vary

over time [see Erler and Peltier (2015) for an example].

Hence we argue that some degree of spatial variation is

also acceptable. Many previous studies have avoided

pooling of data altogether and instead chose to fit a dis-

tribution to every site individually. However, in section

S2.4 of the supplementary material, we demonstrate that

without pooling of data it is not possible to constrain the

shape parameter adequately and even unphysical values

cannot be rejected based on the goodness-of-fit test.

Furthermore, the differences between models and the

differences between validation and projection periods are

often not statistically significant, if tested on a station-by-

station basis (i.e., the sampling error is larger than the

differences). It is of course possible to aggregate indi-

vidual test results using batch-testing techniques (e.g.,

Livezey and Chen 1983); however, it would still be nec-

essary to aggregate the samples into different (more

homogeneous) groups for the purpose of analysis. We

further argue that due to the nonlinearity of the fitting

process, averaging of distribution parameters or return

periods from different sites will introduce similar or

even larger errors than pooling based on relatively

homogeneous clusters. The key advantages of pooling

are that the shape parameter can be constrained more

accurately and that statistical test can be applied in a

meaningful way.

For the comparison to observations and for the es-

timation of extremes, we employ bias correction of the

distribution mean (but not of other moments). Bias

correction was performed by multiplying the location

and scale parameters of the modeled distribution with

the ratio of the means of the observed and the modeled

distribution so that the observed and the bias-corrected

sample means are the same. This is equivalent to

rescaling the samples, but it does not require a new fit.

All computations involving the GEV distribution and

related statistical tests were performed using the SciPy

statistics library (Jones et al. 2001). The GEV param-

eters were determined using a maximum likelihood

estimator.

4. Climatologies of station clusters

In this section the climatological seasonal cycle and

seasonal averages will be discussed; this directly extends

the discussion in section 3 of Erler et al. (2015). We dis-

cuss changes in total and net precipitation, convective

precipitation and snowfall, and extremes of precipitation.

We also discuss the spatial structure of the change in

precipitation extremes. For information on temperature,

snowmelt, and runoff changes, see section S1.1 of the

supplementary material.

a. The average seasonal cycle

Figure 2 shows the climatological seasonal cycle of

precipitation-related variables for station clusters 2, 6,

and 8 (Pacific, plateau, and Prairies). Observational data

are shown as filled circles with error bars, and down-

scaled IC ensemble data are shown as lines: solid lines

for the historical period, dashed–dotted lines for the

midcentury period, and dashed lines for the end-century

period (for clarity, error bands are shown only for the

historical period). The error bars and bands are based on

the standard error of the mean (SEM), which is related

to the sample standard deviation s by SEM 5 (1/n)1/2s,

where n is the number of samples (the number of years

in this case). The error bars and bands show the 95%

confidence region, corresponding to approximately

62 SEM. The standard deviation itself would be a

measure of the interannual variability, which is to be

distinguished from the uncertainty in the mean. The

standard error of the mean has been estimated for each

station separately and averaged subsequently. This

procedure likely overestimates the true uncertainty in

the aggregated station average. However, since monthly

means vary on larger spatial scales, correlations between

stations within the same cluster cannot be neglected, and

treating all station values as independent samples would

underestimate the uncertainty in themean. The scales to

the right of each panel show the annual means. The

seasonal cycle of total and solid precipitation, as well as

wet days of all station clusters, is shown in Fig. S3 in the

supplementary material. Here we note only that the

number of wet days is significantly overestimated in

WRF in all clusters that are not directly at the coast. This

is the case for both configurations, but it is slightly more

pronounced for the first (IC) ensemble. The over-

estimation of wet days is more pronounced for lower

thresholds, suggesting that a large amount of ‘‘drizzle’’ is

present in the simulations; this is a common problem in

climate models (cf. Stephens et al. 2010).

The increase in temperature due to global warming

in our simulations is approximately 28C at the coast and

38C land inward by midcentury; by the end of the

century the increase is just over 48C at the coast and

almost 58C land inward. The increase is generally larger

in the diurnal minimum temperature and smaller in the

diurnal maximum (see Fig. S2 in the supplementary

material). As discussed in Erler et al. (2015), the in-

crease in average winter temperature is relatively
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consistent between the models, while the increase in

summer temperatures is larger in CESM.

Total, convective, and solid precipitation are shown in

Fig. 2 (top row; monthly means). Compared to station

observations, winter precipitation at the coast is signifi-

cantly underestimated, while it is overestimated for the

plateau and Prairies (quite substantially for the plateau).

This problem was previously identified in Erler et al.

(2015), who suggested that this is at least partly caused

by an underestimation of the rain shadow effect of the

Coast Mountains. It is interesting to point out that at the

coast, the total precipitation amount and the relative

change are larger in fall than in winter, whereas both are

similar in fall and winter in the Prairies; the plateau

cluster has a slight asymmetry in total precipitation, but

the relative change is the same. Furthermore, the peak

in convective activity at the coast, as well as the largest

increase therein, also occurs in fall, likely due to high

frontal activity in fall combined with larger moisture

availability and higher temperatures. It is not surprising

FIG. 2. Seasonal cycle of (top) precipitation types and (bottom) precipitation extremes for selected station clusters—#2, #6, and #8—for

the IC ensemble. The error bars–colored bands show the standard error of the climatological mean [s/(n)1/2]); the scales to the right of

each panel show the value of the annual mean.
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that the amount of snowfall (solid precipitation) de-

creases. The Pacific and plateau clusters see a decrease

throughout the winter, while the Prairies, which expe-

rience colder winters due to the continental climate,

see a decrease only at the beginning and the end of the

snow season. The total amount of snow is somewhat

overestimated toward the coast. At the end of the cen-

tury, snow is projected to almost disappear completely

at the coast, but it is important to note that this is the

case for station locations only at lower elevations.

Summer precipitation is generally represented more

accurately in WRF; only the stations at the Pacific coast

have a significant (low) bias. In the IC ensemble, all

clusters are characterized by only a small (hardly sig-

nificant) change in total precipitation, but convective

precipitation increases significantly in the plateau and

Prairies clusters.

Analogous figures for the CESM ensemble and the

alternate WRF ensemble are shown in the supplemen-

tary material. The alternate WRF ensemble shows a

very similar performance to the first WRF ensemble at

the Pacific coast; in the Prairies its performance is

somewhat better, with only a small low bias in fall pre-

cipitation but essentially no bias in summer and fall. In

the interior plateau the seasonal cycle is much better

represented in the alternate WRF ensemble, despite a

high bias in summer. The climate change response is also

generally similar in the alternate ensemble, except for a

significant precipitation increase of approximately 10%

in summer in the Prairies, which is not seen in the first

WRF ensemble. In CESM, on the other hand, sum-

mer precipitation in western Canada generally de-

creases, which is consistent with most CMIP5 models

(Christensen et al. 2013) but is at odds with the two

WRF ensembles and other high-resolution climate

projections (e.g., Endo et al. 2012). In fall and winter,

CESM shows smaller changes than the two WRF en-

sembles at the coast and a significant reduction in snow

during winter land inward, where WRF shows only a

decreases at the beginning and the end of the snow

season. The seasonal cycle is well represented at the

coast, although the magnitude of precipitation is un-

derestimated. In the interior plateau, CESM essentially

simulates the same seasonal cycle and precipitation

amounts as at the coast (i.e., there is no rain shadow).

The seasonal cycle in the Prairies is considerably un-

derestimated in CESM: fall, winter, and spring pre-

cipitation is overestimated by a factor of 2, while

summer precipitation is simulated very accurately. All

models also show a high faction of convective pre-

cipitation in summer land inward; interestingly the

fraction is the lowest in the firstWRF ensemble (;55%)

and the highest in the alternate ensemble (;70%). Both

WRF ensembles project a considerable increase in

convective precipitation in the future, while in CESM

convective precipitation decreases (see section 6b for

more information). It is notable, however, that the de-

crease in convective precipitation is considerably less

than the decrease in total precipitation.

The climate change response in winter is very robust

and consistent between models, while the response in

summer is inconsistent and possibly weak. The increase

in winter can be understood under the assumption that

the main source of moisture is the Pacific Ocean, and

that winter precipitation is essentially transport limited.

The ocean has a weaker seasonal cycle and is thus

warmer than the air and the land in winter, so evapo-

ration is not the limiting factor. Consequently, the air

masses that bring moisture across the Rocky Mountains

are close to saturation, and transport is limited only by

the saturation vapor pressure, which increases by

7% 8C21 (Trenberth et al. 2003). In summer, on the other

hand, precipitation is more dependent on local processes

such as convection, and evapotranspiration over the

continent constitutes a significant moisture source (van

der Ent et al. 2010); currently both of these processes are

parameterized and thus are highly model dependent.

b. Changes in the mean of extreme precipitation

Monthly maxima of daily and 5-day (pentad2) pre-

cipitation and daily convective precipitation are shown

in Fig. 2 (bottom row; corresponding roughly to the

96.7th percentile). It is evident that precipitation ex-

tremes closely follow the seasonal cycle of the monthly

averages. The changes in precipitation extremes in fall

and winter by midcentury and the end of the century

are very similar to the changes in monthly means, but in

summer there is a small increase in extremes, while

there is no increase in the monthly means. Note that

convective precipitation, even for daily extremes, is

considerably smaller than total precipitation, and the

fraction is approximately the same for extremes and for

monthly means. The increase in convective precipita-

tion extremes follows the same pattern as the increase

in monthly mean convective precipitation. Again, the

fraction of convective precipitation extremes to total

precipitation extremes is about 15% points larger in

the alternate ensemble compared to the first WRF

ensemble. The fraction of convective precipitation

in CESM is close to that of the alternate WRF

ensemble.

2 Here pentad precipitation extremes are defined as the maxima

of nonoverlapping 5-day precipitation rate averages; some studies

use the 5-day accumulation instead.
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The finding that across the seasonal cycle changes in

extremes approximately follow changes in the mean

appears to be at odds with some previous studies

(Dominguez et al. 2012; Kharin et al. 2013). This may

be a coincidence and only true for this region, but the

effect of seasonal versus annual aggregation (or GEV

block size) should also be considered: if mean and ex-

treme precipitation increase equally during the wettest

season and decrease during drier seasons, then the

change in annual extremes will be close to the change

during the peak season, while the increase in the annual

mean will be less pronounced.

It is further evident that in most regions and seasons,

the magnitude of daily precipitation extremes is ap-

proximately 40% smaller in the WRF ensemble than in

observations. This is not surprising, because model

values represent gridpoint averages, while station ob-

servations represent point values. The magnitude of

pentad extremes, on the other hand, is actually simu-

lated very accurately, especially in summer. This is likely

due to the high degree of temporal aggregation, which

compensates for the spatial aggregation effect seen in

the model data (cf. Eggert et al. 2015).

The spatial distribution of the change inmaxima of daily

precipitation by the endof the twenty-first century is shown

in Fig. 3 (corresponding roughly to the 98.9th percentile).

In Fig. 3, the CESM ensemble is shown on the left, the

WRF IC ensemble in the center, and the alternate WRF

ensemble on the right; the top row shows the maxima for

summer and the bottom row for winter. Consistent with

Fig. 2, there is a wide spread increase in winter pre-

cipitation that slightly increases land inward, in particular

in the lee of theRockyMountains (the Prairies). This is the

case in all three ensembles. The picture in summer, how-

ever, is less clear: there is a suggestion of a north–south

gradient in the ensemble means, but it is not consistent

between individual members of any of the IC ensembles

(not shown). If seasonal averages of monthly maxima of

precipitation are plotted, then the north–south gradient is

more easily discernible and in monthly means it is already

clearly visible at midcentury (e.g., see Fig. 7 in Erler et al.

2015). It is thus likely that the same north–south gradient

would emerge if more data were available to improve the

signal-to-noise ratio. For comparison the changes in sea-

sonally averaged precipitation at the end of the twenty-first

century are shown inFig. S6 in the supplementarymaterial.

The existence of a gradient has implications for the

interpretation of changes within station clusters: because

station clusters are mainly oriented along the meridional

direction and the southern stations are typically within

the transition region, stations with different trends are

being mixed; however, given the uncertainty associated

with the location of the transition and the amount of

natural variability, we do not believe that a further di-

vision based on the climate change signal is warranted at

this point.

5. Analysis of precipitation extremes

In this section, changes in the distribution of seasonal

maxima and rare extreme events with decadal return

periods will be discussed. The seasonal maxima roughly

correspond to the 98.9th percentile of the season; the

maximum of the season with the highest (extreme)

precipitation also corresponds to the 99.7th annual

percentile. All histograms and distribution functions

shown in this section are based on seasonal maxima (i.e.,

one data point per season and year).

This section is concerned only with extremes of daily

precipitation totals; we first show distributions for the his-

torical and projection periods, before we discuss the be-

havior of the extreme tail of the distributions. The role of

cumulus precipitation and important differences between

the two WRF emsembles are discussed in the next section.

The probability density functions (PDFs) of fitted

GEV distributions, along with histograms of the un-

derlying data, are shown in Figs. 4, 5, 7, and 8 (corre-

sponding PDFs and histograms are identified by color).

Every panel has a reference sample (usually the obser-

vations or the historical IC ensemble), which will be in-

dicated in the figure caption. The p values for the quality

of fit and the ratios of the sample means to the reference

sample are given in the upper-right corner of each panel

(first and second columns, respectively). Also printed on

each panel are the K–S test results from the comparison

of each sample to the reference sample, as well as the

ratio of the distribution means (after bias correction, if

applicable). The p values associated with the quality of fit

tend to be exaggerated, for the simple reason that the

maximum likelihood estimator optimizes a metric that is

similar to the p value; the values should simply be re-

garded as a guide to the quality of fit. Confidence in-

tervals at the 95% level are shown as semitransparent

bands around the PDF curves; the confidence intervals

were derived from bootstrapping (random resampling

with replacement; Efron and Tibshirani 1994), using 100

realizations; they indicate sampling uncertainty, that is,

how sensitive the fit is to the selection of data points. Note

that bootstrapping does not provide any estimate of un-

certainty that has not been sampled (e.g., model uncertainty).

In Figs. 4–7 station clusters are shown in columns

(from left to right: Pacific, plateau, and Prairies), as

before, and seasons are organized by row, with summer

in the top row and winter in the bottom row. The ex-

ception is the Pacific cluster, for which fall is shown in

the upper-left panel instead of summer. The reason for
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this choice is twofold: first, both the largest precipitation

amount and the largest change in the Pacific cluster

occur in fall, and summer is the time of the precipitation

minimum, which does not change appreciably. Second,

our confidence in the summer results for the Pacific

cluster is lower, because the region could still be af-

fected by the SST and sea ice interpolation error (which

is the case for cluster 1).

The number of stations and observational data points

in each cluster (for the season) are shown in the panel

headers; the number of data points for the simulations is

always the length of the simulation (in years, i.e., 60)

multiplied by the number of stations.

a. The distribution of precipitation extremes

1) VALIDATION

Figure 4 shows the PDFs of seasonal maxima of daily

precipitation intensities for the validation period

(1979–94). PDFs are shown for the outer (green; 30-km

resolution) and inner (blue; 10-km resolution) domains

of the IC ensemble, as well as the driving CESM en-

semble (red; ;100-km resolution). Also shown are the

station observations (black), which are the reference

samples in each panel. The quality of the GEV fits is

generally quite good for WRF but not acceptable for

CESM. The reason is that the climate of CESM signifi-

cantly differs from the observed climate, and the station

clusters violate the assumption of identical distribution

for CESMdata. ForWRF, on the other hand, the station

clusters appear to work well. Again, it is evident that the

mean of the observed distributions is significantly larger

than the mean of the model distributions; in almost all

cases themagnitude of model extremes is approximately

60% of the observed extremes (except in winter in the

interior plateau, where precipitation is generally over-

estimated). The reduction of the intensity of precipitation

extremes due to temporal and spatial aggregation was

FIG. 3. Geographic distribution of changes inmaximumdaily precipitation for the (left) CESMensemble, (center) theWRF IC ensemble,

and (right) the WRF alternate ensemble in (top) summer and (bottom) winter. Changes are shown for the end of the twenty-first century

relative to the historical period.Markers indicate station locations for the Pacific (circles), plateau (triangles), and Prairies (squares) clusters.

The pattern of change is similar to but noisier than the pattern of change in the monthly means (see Fig. S6 in the supplementary material).
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investigated by Eggert et al. (2015), using high-resolution

radar data over Germany. The area reduction factors

derived by Eggert et al. (2015) can potentially explain the

reduction seen in summer, when convective precipitation

is dominant, but they cannot explain that the reduction

factor is the same in winter, when stratiform precipitation

is dominant, and also in the outer WRF domain, which

has a different resolution. In this context it should also be

noted that the effective resolution of our simulations is

likely a multiple of the nominal resolution (i.e., coarser)

due to numerical diffusion (cf. Skamarock 2004).

Bias-corrected (rescaled) model distributions are

shown as dashed lines. The p values in the ‘‘Rescaled

Experiments’’ section refer to the null hypothesis that

the bias-corrected model distribution is the same as the

observed distribution. The apparent quality of fit is the

FIG. 4. Distribution of (top) fall (for only Pacific) and summer (plateau and Prairies) and (bottom) winter maxima of daily average

precipitation with validation against observations in the (left) Pacific, (center) plateau, and (right) Prairies regions: observations (black),

IC outer (D1; green) and inner (Ens.; blue) ensemble, and CESM (red). The dashed lines are fits that were rescaled so that themean of the

model distribution matches the distribution mean of the observed distribution. The colored bands are 95% confidence intervals, derived

from bootstrapping. The station observations serve as the reference sample. The number of stations (#) and the number of samples (yrs)

for each cluster and season are indicated in the panel titles.
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highest in the Pacific cluster, but that is partly because it

is the smallest, so the differences are statistically less

significant. After rescaling all models/domains achieve

an acceptable fit in the Pacific cluster. This is also the

case for the Prairies and plateau clusters in summer

because summer precipitation is in general more ho-

mogeneous, so samples can be more easily pooled (also

see section S2.3 in the supplementarymaterial). It is also

apparent that there is no relationship between resolu-

tion and the quality of fit. This is plausible because

summer precipitation is largely convective, which is

parameterized in all models, so summer precipitation

and extremes depend more on the quality of the pa-

rameterization than the resolution of the model. The

quality of fit in winter in the plateau and the Prairies is

much lower, especially for CESM, and here a clear

FIG. 5. Distribution of (top) fall (for only Pacific) and summer (plateau and Prairies) and (bottom) winter maxima of daily average

precipitation: projection for midcentury and end of the century (no rescaling) in the (left) Pacific, (center) plateau, and (right) Prairies

regions: IC ensemble (blue), IC 2050 (purple), and IC 2100 (red). The colored bands are 95% confidence intervals, derived from boot-

strapping. The reference sample is the historical IC ensemble. The number of stations (#) and the number of samples (yrs) for each cluster–

season are indicated in the panel titles.
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dependence on resolution is apparent. In particular in

the rugged terrain of the interior plateau, very high

resolution is necessary and only the inner WRF domain

achieves an acceptable fit. In the Prairies, on the other

hand, even the resolution of the outer domain (30 km)

appears sufficient. The poor performance of CESM

(even after rescaling) can probably be attributed to an

inadequate representation of the topography, where the

interior plateau is essentially missing and the rain shadow

in the lee of the Rocky Mountains is underestimated.

These results suggest that summer precipitation is

adequately parameterized in the regional model and the

global model, and the added value of higher resolution

appears to be small. However, we point out that the

spatial variability is much better represented in the re-

gional model (cf. Fig. 5 in Erler et al. 2015) and that the

FIG. 6. Extreme quantiles of maxima of daily average precipitation (top) fall (for only Pacific) and summer (plateau and Prairies) and

(bottom) winter in the (left) Pacific, (center) plateau, and (right) Prairies regions: EC observations (black), IC ensemble (blue), IC 2050

(purple), and IC 2100 (red). The model distributions have been rescaled to match the mean of the observed distribution: the curves shown

in solid lines were rescaled with a single factor (equivalent to the dashed lines in Fig. 4). The curves shown in dashed lines were all rescaled

separately, so their distribution means are all identical and equal to the observations in order to facilitate comparison of the shape of the

distributions. Confidence intervals and annotation as in Fig. 5.
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climate change signal in the global model is opposite in

much of our region of interest. In winter, on the other

hand, the regional model is clearly superior, and simple

rescaling is not able to correct the global model. Here

the added value of higher resolution is obvious and even

higher resolution would likely be beneficial. In summer

higher resolution might be beneficial at scales where

convection is resolved explicitly. These conclusions are

robust across most clusters and alternative clustering

algorithms. It should be pointed out, however, that

statistically significant differences to observations also

appear for the IC ensemble in thePacific cluster in summer

and in cluster 5 for most seasons (despite bias correction).

2) PROJECTION

The projected PDFs for the two future time periods

(2045–60 and 2085–2100) are shown in Fig. 5; the model

distributions for the historical period are shown for

comparison; they also serve as the reference sample in

this figure. Note that the x-axis scale is different from

FIG. 7. Distribution (top) fall (for only Pacific) and summer (plateau and Prairies) and (bottom) winter maxima of daily average

precipitation for the alternate IC ensemble (otherwise analogous to Figs. 4 and 5) in the (left) Pacific, (center) plateau, and (right) Prairies

regions: EC observations (black), Alt ensemble (blue), and AE 2100 (red). The historical ensemble serves as a reference sample.
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Fig. 4, because the samples have not been bias corrected

(rescaled). Low p values (e.g., p, 0.05) in the ‘‘Fit to IC

Ens.’’ parts of the figure indicate that the null hypothesis

that the distribution does not change can be rejected at a

significance level a5 p (i.e., there is a detectable climate

change signal if the p value is close to zero). There is a

clear increase in the distribution means in all clusters in

winter and fall, but no statistically significant change in

summer in the plateau and Prairies. The confidence in-

tervals (95%) confirm the K–S test results: changes are

significant where the confidence bands are well sepa-

rated. Again, the changes in extremes are consistent with

the changes in the mean: roughly 30% increase in winter

extremes in the plateau and the Prairies, and in fall at the

coast; 15% increase in winter at the coast and essentially

no changes in summer (by the end of the century). Con-

sidering that the temperature increase in winter is about

58C, this implies a 6% 8C21 increase inwinter—very close

to the Clausius–Clapeyron limit of 7% 8C21 (Trenberth

et al. 2003)—and is expected under the hypothesis that

winter precipitation is transport limited. The climate

change response in CESM is similar in winter and fall,

albeit of a smaller magnitude (15%–20% increase). In

summer, however, the CESM ensemble shows a strong

and statistically significant decrease in precipitation ex-

tremes of 15%–20%. This is at odds with the first WRF

ensemble, but again consistent with the changes in the

mean (in CESM). See section 6 for further discussion of

differences between the three ensembles.

The differing trends in summer and winter pre-

cipitation found in our simulations are largely consistent

with scaling relationships derived from historical obser-

vations by Berg et al. (2009), who analyzed daily summer

and winter precipitation intensity as a function of surface

temperature for several regions in Europe and found that

winter precipitation over northern Europe, a region

which is climatologically similar to British Columbia,

scales with surface temperature at a rate that is close to

but somewhat smaller than the Clausius–Clapeyron re-

lation, consistent with our results. For summer pre-

cipitation intensity, they do not find a consistent scaling

relationship to surface temperature.

It is interesting to note that in summer in the Prairies,

there is a significant change to weaker precipitation

extremes at midcentury (but not at the end of the

twenty-first century). It is, however, not clear whether

this is a representative result, because one of the en-

semble members simulates severe drought in the Prai-

ries at midcentury (WRF-1 in Erler et al. 2015). This

happens neither at the end of the century nor in any of

the other ensemble members. Hence, it is possible that

the ensemble mean at midcentury might be affected by

an outlier. To determine the frequency of such outliers,

additional IC ensemble members would be necessary

(the exceptional dryness is also evident in the driving

CESM ensemble member).

Extremes in solid precipitation (snow; not shown) are

less consistent between station clusters, but they are

consistent with changes in temperature and precipitation.

In the Pacific and plateau clusters, solid precipitation

extremes do not increase, because the increase in pre-

cipitation is accompanied by a transition from solid to

liquid precipitation as temperatures increase. In the

Prairies, on the other hand, where winter temperatures

are significantly lower, winter precipitation remains pre-

dominantly snow and the increase in solid precipitation

extremes is the same as in total precipitation extremes.

b. Extreme quantiles

Figure 6 characterizes the tail behavior of the distri-

butions; it shows the CDFs of daily precipitation in-

tensities of rare (decadal return period) events. The

model results have been bias corrected (rescaled), so

the historical model distributions have the samemean as

the observations; the simulated distributions for the

projection time periods have been rescaled by the same

factor so that they can be usefully compared. The sim-

ulated 50- and 100-yr return period events for the his-

torical period are marked by vertical lines; the projected

future return period for such an event is given by the

y-axis location where the vertical line intersects theCDF

of the projection period. Note that the relative change in

return periods is not affected by bias correction. As

before, the semitransparent bands indicate 95% confi-

dence intervals with respect to sampling uncertainty.

Because the most extreme quantiles of a distribution are

constrained only by a few extreme events, the sampling

uncertainty is larger than for the bulk of the distribution.

In half of the clusters/seasons, the tail behavior of the

observations and the historical simulations is different,

even after rescaling. However, as the otherwise accept-

able fit indicates, these differences are statistically not

significant (based on the K–S test; note that those with a

more similar tail behavior have a higher p value in

Fig. 4). The tail behavior of historical and future pro-

jections is clearly separated in fall in the Pacific cluster

with a decrease in return periods by a factor of 3–4. In

winter at the coast and in the Prairies, the return periods

decrease by a factor of 2–3. In summer in the plateau and

the Prairies, and interestingly also in the plateau in

winter, the separation is weak and the change in return

periods is small. Table 1 lists return periods for events

that have a return period of 20, 50, and 100 yr in the (bias

corrected) historical simulation.

It has been pointed out repeatedly that changes in

extremes generally follow changes in the mean. To
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investigate the impact of changes in the mean of the

distribution as opposed to changes in the shape, we

have added versions of the projected CDFs that have

been rescaled to the same mean as the observations (so

all periods have the same mean); these rescaled CDFs

are shown as dashed lines (same color, no error bands)

in Fig. 6. During fall and winter, the rescaled CDFs

have considerably lower intensities than the original

(bias corrected) curves; this implies that the increase in

the means contributes significantly to the change in

return periods. In fall, at the coast and in winter in the

Prairies, the rescaled curves lie within the sampling

uncertainty of the historical distribution, suggesting

that essentially all change is simply due to an increase

in the mean. In the plateau cluster in winter, changes in

the shape appear to compensate for the increase in the

mean, so there is not much change in decadal return

period events. This change in shape could be associated

with a change in orographic forcing or the transition

from snow to rain. In summer, on the other hand, vir-

tually all change in the most extreme quantiles is due

to a fattening of the tails, without a significant shift in

the mean (the dashed lines almost exactly overlap the

solid lines). As will be discussed in section 6b, this is

likely associated with an increase in the fraction of

convective precipitation.

6. Sensitivity to moist physics

a. The alternate IC ensemble

To test the robustness of the results, an alternate ini-

tial condition ensemble using different convective and

microphysics parameterizations and several sensitivity

tests with different physical parameterization schemes

was integrated. Figure 7 shows the distribution of sea-

sonal maxima of daily total precipitation from the al-

ternate WRF ensemble. The figure is analogous to

Figs. 4 and 5, except that the validation and the pro-

jection periods have been combined and bias-corrected

distributions are shown for all periods; for clarity, the

midcentury period has been omitted. The reference

sample in Fig. 7 is the historical ensemble. It is evident

that significant differences from observations occur

during the cold seasons (fall and winter) in all clusters.

The differences occur despite bias correction and are

most prominent at the coast, where the tails of the dis-

tributions are too large; in the Prairies in winter, on the

other hand, the distribution is too narrow and the tail is

too small. Since the driving CESM simulations are the

same as in the first WRF ensemble (IC) and convective

precipitation is small during the cold seasons, the dif-

ferences in the distribution shape can likely be attrib-

uted to the microphysics scheme: the alternate IC

ensemble uses the simpler single-moment WSM6

scheme. It should be noted here that mean winter pre-

cipitation is generally modeled more accurately by the

WSM6 scheme. However, it appears plausible that a

simpler but well-calibrated microphysics scheme, such

as WSM6, cannot adequately capture the full distribu-

tion of precipitation, even though it reproduces the

monthly climatology more accurately. The newer Mor-

rison two-moment scheme, on the other hand, may not

be sufficiently well calibrated to reproduce the mean

accurately, but it also appears to have weaknesses at the

TABLE 1. The return periods of extreme daily precipitation event, which have a return period of 20 or 50 yr in the historical simulations

(bias corrected, for comparison with the observed return periods). The errors margins are based on 95% confidence intervals from

bootstrapping, but in the interest of readability positive and negative errors have been averaged; typically positive errors are about twice as

large as negative errors. (Obs. is observations; Ens. is ensemble.)

Experiment

Pacific Plateau Prairies Pacific Plateau Prairies

Fall Summer Summer Winter Winter Winter

Daily precipitation events with 20-yr return period

EC Obs. 33 6 12 26 6 8 35 6 6 19 6 6 65 6 27 23 64

IC Ens. 20 6 7 20 6 6 20 6 4 20 6 6 20 6 6 20 6 3

IC 2050 9 6 2 21 6 6 25 6 4 11 6 2 12 6 2 12 62

IC 2100 7 6 2 16 6 4 17 6 3 9 6 2 11 6 3 8 6 2

Daily precipitation events with 50-yr return period

EC Obs. 117 6 64 75 6 37 122 6 38 41 6 25 443 6 352 70 6 22

IC Ens. 50 6 34 50 6 20 50 6 14 50 6 20 50 6 22 50 6 12

IC 2050 21 6 8 57 6 18 68 6 19 19 6 4 31 6 12 26 6 5

IC 2100 14 6 4 36 6 13 39 6 9 18 6 6 40 6 22 18 6 4

Daily precipitation events with 100-yr return period

EC Obs. 330 6 228 169 6 120 320 6 140 71 6 63 2404 6 3256 177 6 86

IC Ens. 100 6 107 100 6 53 100 6 36 100 6 46 100 6 58 100 6 29

IC 2050 38 6 23 120 6 48 145 6 51 30 6 8 68 6 33 48 6 12

IC 2100 25 6 10 69 6 30 73 6 21 29 6 14 117 6 128 33 6 8
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lower end of the intensity spectrum (i.e., too much drizzle;

see section S1.2 in the supplementary material). Never-

theless, despite themismatchwith observations, the climate

change response in winter is essentially the same in both

WRF ensembles, so the climate change signal can be re-

garded as robust. The increase is somewhat weaker in

CESM (15%–20%) but of the same sign.

The results for summer are more disconcerting. As

with CESM and the first WRF ensemble, the fit to

observations is quite good in summer (after bias cor-

rection), but the climate change response is very dif-

ferent: the alternate IC ensemble simulates a

considerably larger and statistically significant increase

in summer precipitation in the Plateau and Prairies

clusters (15%–20%). The CESM ensemble, on the

other hand, shows a statistically significant decrease of

almost 20% in the plateau and Prairies clusters (cf.

Fig. 3). However, because all three ensembles show

good agreement with observations during the historical

period, there is no immediately obvious reason to

prefer one projection over any other (in summer). The

reasons for the differing trends in summer extremes in

the two WRF ensembles are related to the different

cumulus schemes employed, and they will be discussed

in section 6b. The reasons for the decrease in CESMare

more complex and are beyond the scope of this anal-

ysis. We note, however, that CESM shows a similar

decrease in monthly mean summer precipitation.

It is interesting to note that Mladjic et al. (2011)

report a similar increase in summer precipitation ex-

tremes over the Canadian Prairies as seen in our al-

ternate IC ensemble; the Canadian RCM in the

configuration used byMladjic et al. (2011) also employs

the Kain–Fritsch cumulus scheme.

b. The role of convective precipitation

Total summer precipitation extremes in the plateau

and Prairies clusters do not change significantly in the

first IC ensemble, but they do in the alternate IC en-

semble, which utilizes a different cumulus scheme.

Figure 2 reveals that the fraction of convective (or cu-

mulus) precipitation increases significantly, for both the

mean and extremes. Similarly, there is also a consider-

able increase in cumulus precipitation in fall in the Pa-

cific cluster. Figure 8 shows the distribution of seasonal

maxima of cumulus precipitation in the (first) IC en-

semble: fall for the Pacific cluster and summer for the

plateau and Prairies clusters. These are also the seasons

when cumulus precipitation peaks, so they are equiva-

lent to annual maxima. Note that cumulus or convective

precipitation in this context is defined as the un-

resolved, parameterized component of precipitation;

nonconvective or stratiform (i.e., resolved or grid

scale) precipitation is shown with dashed lines for

comparison (same color, no confidence intervals). The

reference sample is the historical IC ensemble. It is evi-

dent that there is a considerable increase in convective

extremes in all regions and in particular at the end of the

century, although it is not as high as the increase seen in

winter precipitation, except at the coast, where the in-

crease in convective precipitation is significantly larger

than the already large increase in total and nonconvective

precipitation. It is not clear to what extent the increase is

still affected by the SST and sea ice interpolation error

mentioned earlier, but similar changes are also seen in the

four stations on thewest side ofVancouver Island (cluster 3),

where no interpolation errors have been found. On the

other hand, in the alternate IC ensemble the increase at

the coast is still present, but it is not as strong. A similar

increase in convective precipitation with surface tem-

perature (and compensating decrease in stratiform

precipitation) was also found by Berg et al. (2009) in

historical regional climate simulations over Europe. The

increase in convective precipitation with temperature

occurs in similar magnitude in all the cumulus schemes

that were tested: Grell-3, Kain–Fritsch, and the Tiedtke

scheme; the increase is always accompanied by an in-

crease in the fraction of convective precipitation. The

latter is even the case in CESM, where convective pre-

cipitation in the area of interest decreases, but the de-

crease is less than the decrease in total precipitation

(approximately 10% points less).

However, the fraction of cumulus precipitation in

summer appears to be sensitive to the choice of the con-

vective parameterization: the fraction of convective pre-

cipitation in the first IC ensemble (using the Grell-3

scheme) is only about 55% (cf. Fig. 2), while it is ap-

proximately 70% in the alternate IC ensemble (using the

Kain–Fritsch scheme) andCESM.Unfortunately, data on

the type of observed precipitation events are not available

for EC stations, so the fraction of cumulus precipitation

cannot be validated against observations.

However, using data from weather radar and sta-

tion observations in Germany, Berg et al. (2013)

determined a relationship between the fraction of cu-

mulus precipitation and surface temperature, and they

find a steady increase with rising temperatures, con-

sistent with our findings. For a typical surface air

temperature of 208C, their relationship suggests a

fraction of cumulus precipitation of about 80%—

closer to the alternate IC ensemble.

The higher fraction of cumulus precipitation, combined

with the robust increase in convective precipitation (ex-

tremes), explains why a significant increase in summer

precipitation (extremes) is seen in the alternate WRF

ensemble and not in the first WRF ensemble. Given the
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cumulus fraction estimate based on the temperature de-

pendence derived by Berg et al. (2013), the projections of

the alternate IC ensemble appear to be more likely; on

the other hand, the spatial pattern produced by the

Grell-3 scheme is more realistic and it is an ensemble

scheme, which is usually assumed to be more robust. It

is clear that the climate change response in summer in

midlatitudes is sensitive to the fraction of cumulus

precipitation. More observational data that differenti-

ate between stratiform and convective precipitation

are needed. Simulations with convection-resolving cli-

mate models will also help to resolve this question.

This analysis is based on daily precipitation averages,

but the results remain essentially unchanged, if 1-h, 6-h,

or 5-day (pentad) averages are employed. This may ap-

pear surprising because shorter time scales are usually

thought to be dominated by convective events in summer

(e.g., Eggert et al. 2015). However, despite the increase in

convective fraction, this does not appear to translate into

a higher increase for extremes of a shorter time scale.

Finally we note that the Grell-3 cumulus scheme also

supports spreading of subsidence to neighboring grid

cells; this capability was enabled in the IC ensem-

ble simulations. Disabling subsidence spreading results

only in a small reduction in precipitation intensity,

which is not statistically significant.

7. Summary and conclusions

In this article we have presented an analysis of pre-

cipitation extremes, based on a small initial condition

ensemble that was dynamically downscaled to 10-km

resolution in two different configurations. Validation

against station observations and projections until the end

of the twenty-first century under the RCP8.5 scenario

were discussed.Anovel approach for pooling of data from

stations with a similar mean climatology was introduced

and employed throughout the analysis, a technique that

lends a high degree of statistical power to our conclusions.

We find that in our domain of interest, western Can-

ada, and across the seasonal cycle, changes in extremes

tend to follow changes in the mean. Previous studies

have typically found a larger increase in extremes than

in the mean; this can be partially explained by the fact

that many previous studies have considered only annual

means and annual maxima. We, on the other hand, find

significant differences in precipitation changes between

seasons (and regions).

FIG. 8. Distribution of fall (for only Pacific) and summer (plateau and Prairies)maxima of daily cumulus precipitation for the IC ensemble

in the (left) Pacific, (center) plateau, and (right) Prairies regions: IC ensemble (blue), IC 2050 (purple) and IC2100 (red).Only fall–summer is

shown; the dashed lines show grid-scale precipitationmaxima for comparison. Stations observations are not available for convective and grid-

scale precipitation separately. The reference sample is the historical IC ensemble. Confidence intervals and annotation as in Fig. 5.
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Changes in summer precipitation are not consistent

between models and thus they are subject to significant

model uncertainty, despite the large volume of data in

each analysis cluster. There appears to be a transition

from decreasing summer precipitation in the south to an

increase in the north, for both mean and extreme pre-

cipitation, but the transition point is located significantly

farther north in CESM than inWRF. As a consequence,

in our region summer precipitation decreases in CESM,

while the alternate WRF ensemble shows a significant

increase and the first WRF ensemble shows no statisti-

cally significant change. There is, however, a major shift

from nonconvective to convective precipitation, as

global warming progresses; this shift appears to be ro-

bust between different models and convection schemes.

However, the impact of this increase depends on the

fraction of convective precipitation, which in turn de-

pends on the convection scheme. Hence, a more active

convection scheme leads to a larger increase in pro-

jected summer precipitation. Furthermore, there is evi-

dence for a fattening of the tail of the distribution of

summer precipitation extremes, even if there is no in-

crease in the mean of the distribution. The agreement

with observations is adequate in all three ensembles and

no dependence on resolution is evident.

In fall and winter, on the other hand, we find a sub-

stantial and consistent increase in precipitation across the

domain: a 30% increase at the coast in fall and in winter

over the plateau and the Prairies, and only about a 10%

increase in winter at the coast and in fall land inward. The

increase in precipitation extremes is the same as the in-

crease in the mean. The strong increase in fall pre-

cipitation is particularly relevant at the coast, where total

precipitation also peaks in fall andmay increase the flood

risk. There is no evidence for a fattening of the tails of the

distributions in winter. It is further evident that the dis-

tribution of winter precipitation extremes is sensitive to

resolution and there is significant added value in higher-

resolution regional simulations: CESM is unable to cap-

ture the observed distribution of winter precipitation

extremes, even after linear bias correction, and the rain

shadow over the interior plateau is missed entirely. In

fact, in four out of six cases, CESMdeviates somuch from

the actual climatology that it is not possible to fit a GEV

distribution to the pooled data. WRF, on the other hand,

is able to reproduce the observed distribution of fall and

winter precipitation extremes much better, and, after

linear bias correction, is statistically indistinguishable

from the observations in many cases (all, for the first

ensemble at 10-km resolution).

In summary, a robust and significant increase in

winter precipitation is projected, while climate change

projections for summer are confounded by high model

uncertainty. The added value of higher resolution is

clearly evident in the distribution of winter pre-

cipitation (extremes), while there appears to be no

added value of higher resolution in summer—at least as

long as convection is parameterized.
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